项目成长

探讨高性能混凝土开裂的原因

发布日期:2009-07-24 字号: [ 大 ] [ 中 ] [ 小 ]
高性能混凝土(以下简称HPC)是经过漫长时间的发展,总结传统混凝土耐久性存在的问题后提出来的,已经在很多重要的工程中成功得到了应用,并因其耐久性而将在今后逐步代替普通混凝土在建筑物中的使用。尽管“高强不一定耐久”的观点已得到共识,但仍有相当多数认为高性能混凝土必须高强。然而,近年来有些国家的论文指出“高性能混凝土”的易裂性。   我国著名混凝土科学家吴中伟院士将HPC定义为:在大幅度提高普通磨粉机能的基础上采用现代混凝土技术制作、以耐久性为设计指标的新型高技术混凝土。并认为高性能混凝土适用于任何强度等级的混凝土。提出HPC内部结构具有以下特点:   (1)孔隙率很低,基本上不存在>100nm的大孔;   (2)水化物中Ca(OH)2减少,C-S-H和AFt增多;   (3)未水化的颗粒多,未水化颗粒和矿物细掺料等各级中心质增多;   (4)界面厚度小,孔隙率低、Ca(OH)2数量减少,且取向程度下降,水化物结晶颗粒尺寸减少,更接近水泥石本体水化的分布。   制砂机具有这样微结构的混凝土,必然会有密实度大、干燥收缩小、抗化学腐蚀性强等性质。   混凝土的收缩是导致混凝土开裂的主要原因。   (1)干燥收缩,干燥收缩是指混凝土停止养护后,在不饱和的空气中失去内部毛细孔和凝胶孔的吸附水而发生的不可逆收缩,它不同于干湿交替引起的可逆收缩,雷蒙磨粉机。这种现象在混凝土刚拆模后表现尤为明显,这时混凝土的强度很低,干缩却非常大,同时由于混凝土拆模后和空气接触使周围空气温度上升,由此导致周围空气的湿度降低,进一步加大了混凝土干缩。影响混凝土干燥收缩的主要因素是:骨料、水灰比、单位水泥浆体含量。   (2)化学收缩,水泥水化后,固相体积增加,但水泥-体系的绝对体积减小。所有的胶凝材料在水化后都有这个减缩作用,大部分硅酸盐水泥在水化后体积总减少量为7%~9%。在硬化前,所增加的固相体积填充原来被水所占据的空间,使水泥密实,而宏观体积减缩;在硬化后,则宏观体积不变而水泥-水体积减缩后形成内部孔隙。因此,这种化学减缩在硬化前不影响硬化混凝土的性质。化学减缩和水泥的组成有关。   (3)塑性收缩,塑性收缩发生在硬化前的塑性阶段,是指塑性阶段混凝土由于表面失水速率大于泌水速率而产生的收缩,多见于道路、地坪、楼板等大面积的工程,以夏季有风的情况下施工最为普遍。混凝土在新拌的状态下,拌和物中颗粒间充满水,如果养护不足,表面失水速率超过内部水向表面迁移的速率时,则会造成毛细管中产生负压,使浆体产生塑性收缩。塑性收缩常伴随着不可见裂缝的发展。   (4)温度收缩,温度收缩主要是混凝土内部温度由于水泥水化而升高,最后又冷却到环境温度时产生的收缩。其大小与环境温度、混凝土浇筑温度、混凝土的热膨胀系数、混凝土最高温度和降温速率有关。降低温升、减小降温速率、提高混凝土的抗拉强度、使用热膨胀系数低的集料(石灰岩、辉长岩),有利于减少冷缩和防止开裂。   (5)碳化收缩,空气中含CO2约为0.04%,在相对湿度合适的条件下,CO2能和混凝土表面由于水泥水化生成的水化物很快地起反应,称为碳化,伴随有体积收缩,称为碳化收缩。碳化收缩是不可逆的。   (6)自收缩,自收缩是由于混凝土内部相对湿度随水泥水化的进展而降低进而造成毛细孔中水分不饱和并由此产生的负压引起的混凝土收缩。混凝土自收缩是在混凝土与外界无水分交换的条件下发生的。影响自收缩的因素主要有水胶比、水泥品种、辅助胶凝材料、集料、水泥细度、养护温度、外加剂、试件尺寸等。   (7)胶凝材料对混凝土早期收缩的影响,现代水泥的组成和细度发生了很大变化,这是建筑业需求的反映;现代混凝土是70年来采用水化趋快、用量趋大的水泥的最终产物。   要正确认识高性能混凝土,不要将其看成是一个混凝土的品种而机械地搬用配合比。高性能混凝土的实现并不是仅依靠配合比,而是需要从涉及到施工的全面配合才能达到的。影响开裂的因素是很复杂的,各种因素还可能会有相反的影响而相互抵消。应当根据不同工程的特点和条件分析不同组成和配合比的混凝土开裂的倾向。在约束条件下的收缩是引起混凝土开裂的潜在因素,通过收缩的测定可以预测混凝土开裂的倾向,但必须有正确的方法和对条件的控制。目前许多有关报道实际上对其所测的收缩数据缺乏分析,没有采取一定的方法和条件把不同种类的收缩加以区别,因此显得混乱。工程实践表明,混凝土耐久性往往与其开裂行为密切相关;建立统一规范的开裂评价体系是必要的,以综合评价混凝土的开裂行为,进而预测其耐久性。高性能混凝土是以耐久性为标志的高技术混凝土,所谓高技术,不仅仅指实现混凝土高性能化的材料技术、制备技术,更要强调高性能的施工技术。  (中国混凝土与水泥制品网 转载请注明出处)

< 完 >